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Abstract
Hertz potentials are used as an alternative to Fresnel’s equation of wave normals
to analyse harmonic plane wave propagation in uniaxially anisotropic media.
Wave vector and amplitudes of ordinary and extraordinary waves are explicitly
given. Refraction of a TM field at the plane face of a uniaxial medium is
discussed and it is shown that in this particular situation, the refracted wave
is identified with the extraordinary wave. Hertz potentials are also a powerful
tool to tackle the same problems when harmonic plane waves are changed into
Gaussian beams.

PACS numbers: 41.20.Jb, 92.60.Ta, 94.20.Bb

1. Introduction

As stated in [1] ‘to understand electromagnetic propagation in a medium whose characteristics
are a function of the propagation direction, it is useful to consider the simplest type of
anisotropy: the uni-axial’. For harmonic plane waves, the Fresnel’s equation of wave normals
is the conventional method for analysing propagation in anisotropic media [2–4]. We depart
here from this technique, working instead with Hertz potentials [4, 5]: they explicitly give
the wave vectors and the amplitudes of propagating fields. This makes possible a complete
description of refraction in a uniaxial medium. Hertz potentials are shown to tackle the same
problems efficiently with Gaussian beams instead of harmonic plane waves.

We start with the Maxwell equations; exp(iωt) is implicit,

∇ ∧ H − iωD = 0 (1a)

∇ ∧ E + iωB = 0 (1b)

in a medium with the constitutive relations between the fields E, D, H, B

B = µH, Dx = εEx, Dy = εEy, Dz = ηEz, (2a)
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and we use the notations

n2 = εµ, m2 = ηµ. (2b)

We introduce the Hertz potentials Π(x) satisfying equation (1b)

H(x) = iω∇ ∧ Π(x), E(x) = µω2Π(x). (3)

They differ from the usual Hertz vectors [4, 5] in which E = µω2Π + ∇∇ · Π.
Substituting (3) into (1a) gives, since ∇ ∧ ∇ ∧ Π(x) = ∇∇ · Π(x) − �Π(x),

∇∇ · Π(x) − �Π(x) − D(x) = 0 (4)

that is using (2a) and (2b), the argument x being deleted when there is no risk of confusion,

(� + ω2n2)�x = ∂x(∂x�x + ∂y�y + ∂z�z)

(� + ω2n2)�y = ∂y(∂x�x + ∂y�y + ∂z�z)

(� + ω2m2)�z = ∂z(∂x�x + ∂y�y + ∂z�z)

(5a)

or (
∂2
y + ∂2

z + ω2n2
)
�x = ∂x(∂y�y + ∂z�z)(

∂2
z + ∂2

x + ω2n2
)
�y = ∂y(∂z�z + ∂x�x)(

∂2
x + ∂2

y + ω2m2
)
�z = ∂z(∂x�x + ∂y�y).

(5b)

Since we are interested in harmonic plane wave propagation, we look for the solutions of (5b)
in the form

Π(x) = Ω exp[i(αx + βy + γ z)] (6)

in which Ω is a constant vector depending, of course, on α, β, γ .
Taking (6) into account, we get from (5b) the homogeneous set of equations

(n2ω2 − β2 − γ 2)
x + α(β
y + γ
z) = 0
(n2ω2 − α2 − γ 2)
y + β(α
x + γ
z) = 0
(m2ω2 − β2 − α2)
z + γ (α
x + β
y) = 0

(7a)

that we write as∣∣∣∣∣∣
n2ω2 − β2 − γ 2 αβ αγ

αβ n2ω2 − α2 − γ 2 βγ

αγ βγ m2ω2 − β2 − α2

∣∣∣∣∣∣

∣∣∣∣∣∣

x


y


z

∣∣∣∣∣∣ = 0. (7b)

Making null the determinant of this system gives the directions of propagation.

2. Harmonic plane wave propagation

2.1. Hertz potentials

Multiplying by −γ /β the second column of the determinant in (7b) and summing with the
third column gives the equation∣∣∣∣∣∣

a + α2 αβ 0
αβ a + β2 −aγ /β

αγ βγ b

∣∣∣∣∣∣ = 0 (8a)

in which

a = n2ω2 − α2 − β2 − γ 2, b = m2ω2 − α2 − β2 − γ 2. (8b)
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Multiplying the second line by −γ /β and summing with the third line, we get∣∣∣∣∣∣
a + α2 αβ 0

αβ a + β2 −aγ /β

0 −aγ /β b + aγ 2/β2

∣∣∣∣∣∣ = 0. (9)

Expanding this last determinant gives

(a + α2)[(a + β2)(b + aγ 2/β2) − aγ 2/β2] − α2(bβ2 + aγ 2) = 0 (10a)

that reduces to

a[ab + b(α2 + β2) + aγ 2] = 0 (10b)

with the two solutions

a = 0, ab + b(α2 + β2) + aγ 2 = 0 (11)

and, according to (8b), a = 0 implies

α = nω sin θ cos φ, β = nω sin θ sin φ, γ = nω cos θ. (12)

The second solution may be written as

b(a + α2 + β2 + γ 2) + (a − b)γ 2 = 0 (13a)

and, still taking into account (8b), (13a) becomes

n2m2ω2 − n2(α2 + β2) − m2γ 2 = 0 (13b)

satisfied with

α = mω sin θ cos φ, β = mω sin θ sin φ, γ = nω cos θ. (14)

According to the terminology used for uniaxial crystals [2, 4], these two types of harmonic
plane waves are called ordinary with the wave vector (12) and extraordinary with (14).

Taking into account (12) and (14), the Hertz potential (6) becomes

Π(x) = Ω exp[iωu(x)], u(x) = n(x sin θ cos φ + y sin θ sin φ + z cos θ) (15)

with the phase velocity v2
o = 1/n2 and

Π†(x) = Ω† exp[iωu†(x)], u†(x) = m(x sin θ cos φ + y sin θ sin φ) + nz cos θ (16)

whose phase velocity 1
/
v2

e = m2 sin2 θ + n2 cos2 θ varies with the direction of propagation.
We now have to get the amplitudes Ω,Ω† of these Hertz potentials.

Remark. Hertz–Debye potentials satisfying equation (1b) and discussed in appendix B
generate only ordinary waves.

2.2. Ordinary wave

Taking into account (12), we get from (7b)

sin2 θ cos2 φ 
x + sin2 θ sin φ cos φ 
y + sin θ cos θ cos φ 
z = 0
sin2 θ sin φ cos φ 
x + sin2 θ sin2 φ 
y + sin θ cos θ sin φ 
z = 0
n2 sin θ cos θ cos φ 
x + n2 sin θ cos θ sin φ 
y + (m2 − n2 sin2 θ)
z = 0.

(17)

The first two equations give the same relation

sin θ(cos φ 
x + sin φ 
y) + cos θ 
z = 0 (18a)

and the third equation is

n2 sin θ cos θ(cos φ 
x + sin φ 
y) + (m2 − n2 sin2 θ)
z = 0. (18b)

3
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The solution of (18a) and (18b) is


z = 0, 
x = A sin φ, 
y = −A cos φ (19)

in which A is an arbitrary amplitude. Substituting (19) into (15) gives

�x = A sin φ exp(iωu), �y = −A cos φ exp(iωu), �z = 0 (20)

from which we get at once with (3) the components of the electric and magnetic fields

Ex = µω2�x, Ey = µω2�y, Ez = 0 (21a)

Hx = nω2 cos θ�y, Hy = −nω2 cos θ�x,

Hz = −nω2 sin θ(cos φ �y − sin φ �x).
(21b)

Writing u(x) = x · ν, the relations (20) imply E · ν = 0 and since Ez = 0, we also have
D · ν = 0 where D is perpendicular to the plane containing the direction of propagation and
the z-axis [4].

2.3. Extraordinary wave

We get from (7b) and (14)

sin θ(n2 − m2 sin2 φ)
†
x + m2 sin θ sin φ cos φ 
†

y + mn cos θ cos φ 
†
z = 0

m2 sin θ sin φ cos φ 
†
x + sin θ(n2 − m2 cos2 φ)
†

y + mn cos θ sin φ 
†
z = 0 (22a)

mn sin θ cos θ cos φ 
†
x + mn sin θ cos θ sin φ 
†

y + m2 cos2 θ 
†
z = 0.

Eliminating 

†
z from the first two equations gives the simple relation

sin φ 
†
x − cos φ 
†

y = 0 (22b)

and substituting (22b) into the second equation (22a) gives

n2 sin θ 
†
y + mn cos θ sin φ 
†

z = 0 (22c)

we get from (22b) and (22c)


†
x = −(m/n) cot θ cos φ 
†

z, 
†
y = −(m/n) cot θ sin φ 
†

z. (23)

With (23), the third equation (22a) is identically satisfied, so 

†
z is arbitrary and from now on,

we assume 

†
z = A† where A† is a constant amplitude.

Then, substituting (23) into (16) gives the Hertz potential{
�†

x,�
†
y,�

†
z

} = {−(m/n) cot θ cos φA†,−(m/n) cot θ sin φA†, A†} exp(iωu†) (24)

from which we get with (3) the electric and magnetic fields{
E†

x, E
†
y, E

†
z

} = µω2
{
�†

x,�
†
y,�

†
z

}
H †

x = −ω2
(
m sin θ sin φ �†

z − n cos θ �†
y

)
(25a)

H †
y = −ω2(n cos θ�†

x − m sin θ cos φ �†
z

)
H †

z = −ω2m sin θ
(
cos φ �†

x − sin φ �†
y

)
. (25b)

For θ = π/2, this wave reduces to a TE mode

E†
z = µω2�†

z, H †
x = −mω2 sin φ �†

z, H †
y = mω2 cos φ �†

z (26)

propagating in the z-direction.
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3. Refraction in a uniaxially anisotropic medium [6]

A TM wave coming from a homogeneous region of refractive index ni impinges on the z = 0
boundary of a uniaxially anisotropic medium{

Ei
x, E

i
z,H

i
y

} = {−cos θiAi, sin θiAi,−niAi}ψi (27a)

ψi = exp[iωni (x sin θi + z cos θi)]. (27b)

The continuity of the exponentials at z = 0 implies that the fields in the uniaxial medium do
not depend on y which is obtained according to (15) and (16) by imposing φ = 0. Then,
taking into account (20) and (21a), the ordinary wave has only two nonnull components

Ex = Ez = Hy = Hz = 0; Ey = −µω2Aψ, Hx = −nω2 cos θAψ (28a)

ψ = exp[iωn(x sin θ + z cos θ)]. (28b)

According to (24) and (25a), (25b) we get for the extraordinary wave for φ = 0
{
E†

x, E
†
y, E

†
z

} = µω2{(m/n)A†, 0, A†}ψ †

{
H †

x ,H †
y ,H †

z

} = mω2{0, (cos2 θ † + sin θ †)A†,−n−2 sin θ † cos θ †A†}ψ † (29a)

ψ † = exp[iω(mx sin θ † + nz cos θ †)]. (29b)

To satisfy the boundary conditions on the z = 0 plane, we need the x, y components of the
total field Et = E + E†, Ht = H + H† in the uniaxial medium and according to (28a), (29a)

Et
x = E†

x, Et
y = Ey, H t

x = Hx, H t
y = H †

y . (30)

We now have to define the reflected field; taking the general solution of Maxwell’s equations
for harmonic plane waves with wave vector in the x, z plane gives [2]{

Er
x, E

r
z ,H

r
y

} = {− cos θrR1, sin θrR1,−niR1}ψr

{
Hr

x ,H r
z , Er

y

} = {−ni cos θrR2, sin θrR2, R2}ψr
(31a)

ψr = exp[iωni(x sin θr + z cos θr)]. (31b)

Taking into account (27b), (28b), (29b), (31b), the continuity of the exponentials at the
interface z = 0 supplies the Descartes–Snell relations

ni sin θi = ni sin θr = n sin θ = m sin θ † (32)

and, the boundary conditions on the field tangential components give four equations to
determine the four unknown amplitudes R1, R2, A,A†. Since cos θr = −cos θi , we get
according to (28a), (29a), (30), (31a)

Ex : (R1 − Ai) cos θi = µω2(m/n) cos θ †A† ∼= T1A
†

Hy : ni(R1 + Ai) = −mω2(cos2 θ † + sin θ †)A† ∼= T2A
†

Ey : R2 = −µω2A
Hx : ni cos θiR2 = nω2 cos θA.

(33)

The last two relations imply R2 = A = 0 reducing the refraction problem to a conventional
one with the extraordinary wave as refracted field. A simple calculation gives from the first
two equations

A† = 2ni cos θi(niT1 − cos θi T2)
−1Ai

R1 = Ai + 2niT2(niT1 − cos θi T2)
−1Ai

(34)

When m < ni a total reflection happens for those angles of incidence such as ni/m sin θi > 1.

5
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So, only the extraordinary wave intervenes in the refraction of a TM harmonic plane
wave.

Remark. An ordinary wave is involved in refraction if the determinant of the last two
equations (33) is null which happens, taking into account (32), for an angle θ such as
cot θ = −µ cot θi ,

4. Gaussian beams in uniaxial media

4.1. 2D beams

To analyse the propagation of a 2D Gaussian beam in uniaxial media, we look for the solutions
of equations (5b) in the form

Π(x) =
∫ ∞

−∞
dα Ω(α)χ(α), χ(α) = exp(−α2d2) exp(iαx + iγ z). (35)

Then, making β = 0 in (12) and (14) gives

γ 2 = (n2ω2 − α2), (36a)

γ 2 = (n2/m2)(m2ω2 − α2) (36b)

corresponding respectively to ordinary and extraordinary waves. Substituting (36a) into (7b)
gives Ω(α) = 0: there is no ordinary 2D Gaussian beams.

With (36b), we get from (7b)


y = 0, 
z = A, 
x = k(α)A, k(α) = −(αm/n)(m2ω2 − α2)1/2 (37)

in which A is an arbitrary constant. So, according to (35) and (37), the Hertz vector for the
extra-ordinary Gaussian beam is

�y = 0, �z =
∫ ∞

−∞
dα χ(α)A, �x =

∫ ∞

−∞
dα χ(α)k(α)A (38a)

where, with γ (α) given by (36b)

χ(α) = exp(−α2d2) exp[iαx + iγ (α)z]. (38b)

Then, according to (3)

Ey = Hx = Hz = 0 Ez = µω2�z,

Ex = µω2�x, Hy = −ω

∫ ∞

−∞
dα[γ (α)k(α) − α]χ(α)A

(39)

We may now discuss the refraction of a 2D-TM Gaussian beam, impinging from an isotropic
space on the z = 0 boundary of a uniaxial medium [7–9].

The incident field has the representation

{
Hi

y, E
i
z, E

i
x

} =
∫ ∞

−∞
dα{1, iα/ωni ,−iγi/ωni}χi(α)A (40a)

χi(α) = exp(−α2d2) exp(iαx + iγiz). (40b)

The components of the reflected waves are

{
Hr

y , Er
z , E

r
x

} =
∫ ∞

−∞
dα{1, iα/ωni , iγi/ωni}χr(α)R (41a)

6
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χr(α) = exp(−α2d2) exp(iαx − iγiz). (41b)

The continuity of the tangential components Ex,Hy at z = 0 supplies two relations to
determine the amplitude A of the refracted wave and the reflection coefficient R:

Ai + R = −ω[γ (α)k(α) − α]A, iγi/ωni (R − Ai) = µω2A (42)

with the solution

A = −[2/ωp(α)]Ai, R = Ai + 2µ[ωni/γip(α)]Ai (43a)

p(α) = γ (α)k(α) − α − iµω2/γi. (43b)

For 2D Gaussian beams as for TM harmonic plane waves, only the extraordinary wave
intervenes in the refraction.

4.2. 3D beams

Using the polar coordinates u = (r, φ, z), equations (5a) for the components �r,�φ,�z of
the Hertz vector become

(� + n2ω2)�r(u) = ∂r∇ · Π(u)

(� + n2ω2)�φ(u) = 1/r∂φ∇ · Π(u) (44a)

(� + m2ω2)�z(u) = ∂z∇ · Π(u), respectively

in which

�Π(u) = (
∂2

r + 1/r∂r + 1/r2∂2
φ + ∂2

z

)
Π(u)

∇ · Π(u) = (∂r + 1/r)�r + 1/r∂φ�φ + ∂z�z(u)
(44b)

To discuss the 3D beam propagation, we use the Weber’s first exponential integral [10]∫ ∞

0
αν+1Jν(αr) exp(−α2d2) dα = rν/(2d2)ν+1 exp(−r2/4d2) (45)

in which Jν is the Bessel function of the first kind of order ν.
So, we look for the solutions of (44a) with the components of the Hertz vector in the form

�r =
∫ ∞

0
α2 dα exp(−α2d2) exp(iγ z + iφ)J1(αr)
r

�φ,z =
∫ ∞

0
α dα exp(−α2d2) exp(iγ z)J0(αr)
φ,z.

(46)

It is easily checked that with (46), equations (44a) have a solution only when two components
of the Hertz vector are null. We first assume �r = �z = 0, so (44a) reduces to

(� + n2ω2)�φ(u) = 0 (47a)

but

�[exp(iγ z)J0(αr)] = −(α2 + γ 2) exp(iγ z)J0(αr) (47b)

so that equation (47a) implies n2ω2 − α2 − γ 2 = 0 and according to (46)

�φ =
∫ ∞

0
α dα exp(−α2d2) exp[iγ (α)z]J0(αr)
φ (48)

7
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in which 
φ is a constant and γ (α) = (n2ω2 −α2)1/2. Then, still using (3), this Hertz potential
generates the TE mode

Er = Ez = Hφ = 0 Eφ = µω2�φ,

Hr = −iω∂z�φ, Hz = iω(∂r + 1/r)�φ.
(49)

We now suppose �φ = �z = 0, then (44a) reduces to

(� + n2ω2)�r = ∂r(∂ + 1/r)�r. (50a)

Now

�[exp(iγ z + iφ)J1(αr)] = −(α2 + γ 2) exp(iγ z + iφ)J1(αr)

∂r(∂ + 1/r)J1(αr) = −α2J1(αr).
(50b)

Taking into account (50b), equation (50a) implies n2ω2 − γ 2 = 0 and �r becomes

�r =
∫ ∞

0
α2 dα exp(−α2d2) exp(inωz + iφ)J1(αr)
r . (51)


r is a constant amplitude and with �r , we get the TE mode

Eφ = Ez = Hr = 0 Er = µω2�r,

Hφ = iω∂z�r, Hz = −iω/r∂φ�r.
(52)

Equations (44a) have no solution when 
r = 
φ = 0.
For the refraction of a TE Gaussian beam, impinging from an isotropic space on the

z = 0 boundary of a uniaxial medium, the Hertz vectors of the incident and reflected fields are

�i
φ =

∫ ∞

0
α dα exp(−α2d2) exp(iγiz)J0(αr)Ai

�r
φ =

∫ ∞

0
α dα exp(−α2d2) exp(−iγiz)J0(αr)R.

(53)

Since Eφ = µω2�φ , the continuity of Eφ at z = 0 implies according to (48) and (53)

Ai + R = 
φ (54a)

and since Hr = −iω∂z�φ , we get from the continuity of Hr

γi(Ai − R) = γ (α)
φ. (54b)

We deduce from (54a), (54b) in terms of the incident amplitude Ai


φ = 2γi[γi + γ (α)]−1Ai, 
φ = [γi − γ (α)][γi + γ (α)]−1Ai. (55)

We would have a similar result for the second TE mode.

5. Discussion

It is perhaps a bit excessive to name the Hertz vector potentials used in this work since
E(x) in equation (3) has not the usual definition. Nevertheless, with these Hertz potentials,
solving Maxwell’s equations for harmonic fields in uniaxially anisotropic media is tantamount
to solving an inhomogeneous vector Helmholtz equation. For harmonic plane waves, this
last problem reduces to a set of three linear homogeneous equations and making null the
determinant of this set gives two propagation directions generally obtained from the Fresnel’s
equation of wave normals. So, Hertz potentials may be considered as an electromagnetic
approach to geometrical optics in uniaxal media [3]. But, once these directions are known,

8
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the amplitudes of ordinary and extraordinary waves are obtained as solutions of the linear
homogeneous equations which make easy the analysis of refraction in a uniaxial medium.

The propagation of Gaussian beams in anisotropic media has been discussed for a long
time [11]. So, it was important that the Hertz potentials Π work efficiently to tackle this
problem. The Fourier representation of 2D beams, applied to Π, is currently used [7], [12,
where further references can be found] in electromagnetism and acoustics. It was recently
shown [13] that 3D Gaussian beams may be built up by means of inhomogeneous plane waves
but it seems that the Bessel representation of section 4.2 was never previously used. An
interesting question is whether changing the representation of Hertz potentials modifies the
propagation or not.

Nowhere in this paper, ε, η, µ, n = √
εµ,m = √

ηµ have been assumed positive so all
its results hold valid in a Veselago anisotropic medium where all these parameters are negative
[14]. Changing their sign requires only performing the same operation on phase velocities and
field components, with the same important physical consequences as those existing in Veselago
isotropic media [15, 16] due in particular to the alterations of the Descartes–Snell relations
(32). But in addition the evanescent fields present in the Fourier and Bessel representations
of Hertz potentials become explosive waves disturbing greatly the propagation and refraction
inside a Veselago anisotropic slab [17]. The artificial realization of such materials seeming
now possible, in particular with the development of nanostructures, will promote further works
in this domain.

A natural question is whether Hertz potentials are an efficient tool in biaxial anisotropic
media. We show in appendix A that they explicitly give the two possible propagation directions
of harmonic plane waves and the corresponding field amplitudes.

Hertz–Debye potentials [4, 5, 18, 19] are an alternative technique to solve Maxwell’s
equations in the absence of charges. We show in appendix B that for uniaxial media, these
potentials generate no extraordinary wave but in revenge, a great diversity of ordinary waves
some of which, see (B.13) and (B.24), with a wave vector such as |k| = mω while with Hertz
potentials |k| = nω in any case. The existence of ordinary waves with |k| = mω does not
seem to be known. See [20, 21] for different approaches.

To sum up, problems more easily solved with the Hertz vectors used in this work than
with usual methods, include: plane wave refraction on uniaxial materials, propagation of
3D-Gaussian beams in these media, plane wave propagation in biaxial anisotropic media with
an immediate application to left-handed anisotropic media.

Appendix A. Hertz potentials in biaxial anisotropic media

Let the permitivity tensor be diagonal with components εj , j = 1, 2, 3. We introduce the
notations

nj = √
εjµ, aj = njω − α2 − β2 − γ 2. (A.1)

Still considering harmonic plane wave propagation and looking for solutions of
equation (4) with Hertz vectors in the form (6), we get instead of (7b) the equation

∣∣∣∣∣∣∣

a1 + α2 αβ αγ

αβ a2 + β2 βγ

αγ βγ a3 + γ 2

∣∣∣∣∣∣∣

∣∣∣∣∣∣

x


y


z

∣∣∣∣∣∣ = 0. (A.2)
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Proceeding as in (8a), (9) and making null the determinant of equation (A.2) gives∣∣∣∣∣∣∣

a1 + α2 αβ 0

αβ a2 + β2 −a2γ /β

0 −aγ /β a3 + a2γ
2/β2

∣∣∣∣∣∣∣
= 0. (A.3)

Expanding this last determinant, we get easily

a1a2a3 + α2a2a3 + β2a3a1 + γ 2a1a2 = 0 (A.4)

that is

α2/a1 + β2/a2 + γ 2/a3 + 1 = 0. (A.5)

We now write

aj = n2
jω

2 − b2, b2 = α2 + β2 + γ 2 (A.6)

α = b sin θ cos φ, β = b sin θ sin φ, γ = b cos θ, (A.7)

then (A.5) becomes

b2 sin2 θ cos2 φ
/(

n2
1ω

2 − b2) + b2 sin2 θ sin2 φ
/(

n2
2ω

2 − b2)
+ b2 cos2 θ

/(
n2

3ω
2 − b2

)
+ 1 = 0. (A.8)

A simple calculation shows that (A.8) is a quadratic equation in b2:

Ub4 − ω2V b2 + n2
1n

2
2n

2
3ω

4 = 0 (A.9)

U = n2
1 + n2

2 + n2
3 − sin2 θ cos2 φ

(
n2

2 + n2
3

) − sin2 θ sin2 φ
(
n2

3 + n2
1

) − cos2 θ
(
n2

1 + n2
2

)
V = n2

1n
2
2 + n2

2n
2
3 + n2

3n
2
1 − sin2 θ cos2 φ n2

2n
2
3 − sin2 θ sin2 φ n2

3n
2
1 − cos2 θ n2

1n
2
2. (A.10)

The solutions of (A.9) give the two propagation directions of harmonic plane waves in biaxial
anisotropic media with evanescent waves when V 2 − 4Un2

1n
2
2n

2
3 < 0. Once known these

directions, it remains to solve (A.2) to get the field amplitudes.

Appendix B: Hertz–Debye potentials [4, 5, 18, 19]

We look for the solutions of Maxwell’s equations [1a,b] in terms of two Hertz–Debye
potentials satisfying equation (1b) and respectively called ‘electric’(subscript 1) and ‘magnetic’
(subscript 2)

H = ∇ ∧ (χ1q) + ∇ ∧ ∇ ∧ (χ2q)

E = a∇∇ · (χ1q) − iωµ[χ1q + ∇ ∧ (χ2q)]
(B.1)

in which the scalar fields χ1,2 are solutions of a homogeneous Helmholtz equation, q an
arbitrary vector and a a vector determined to satisfy equation (1a).

A simple calculation gives

[∇ ∧ (χ1q)]x = qz∂yχ1 − qy∂zχ1

[∇ ∧ (χ1q)]y = qx∂zχ1 − qz∂xχ1

[∇ ∧ (χ1q)]z = qy∂xχ1 − qx∂yχ1

(B.2)

10
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and
[∇ ∧ ∇(χ2q)]x = qy∂x∂yχ2 − qx∂

2
yχ2 − qx∂

2
z χ2 + qz∂x∂zχ2

[∇ ∧ ∇(χ2q)]y = qz∂y∂zχ2 − qy∂
2
z χ2 − qy∂

2
xχ2 + qx∂x∂yχ2

[∇ ∧ ∇(χ2q)]z = qx∂x∂zχ2 − qz∂
2
xχ2 − qz∂

2
yχ2 + qy∂y∂zχ2.

(B.3)

We consider successively the ‘electric’ (respectively ‘magnetic’) solutions of Maxwell’s
equations obtained with χ2 = 0 (respectively χ1 = 0).

A.1. ‘Electric solutions’ (χ2 = 0)

We get from (B.1) and (B.2) with ∇.(χ1q) = qx∂xχ1 + qy∂yχ1 + qz∂zχ1

Hx = qz∂yχ1 − qy∂zχ1

Hy = qx∂zχ1 − qz∂xχ1 (B.4a)

Hz = qy∂xχ1 − qx∂yχ1

Ex = ax∂x∇ · (χ1q) − iωµqxχ1

Ey = ay∂y∇ · (χ1q) − iωµqyχ1 (B.4b)

Ez = az∂z∇ · (χ1q) − iωµqzχ1

and, according to (B.4a)

(∇ ∧ H)x = qyδxδyχ1 − qxδ
2
yχ1 − qxδ

2
zχ1 + qzδzδxχ1

(∇ ∧ H)y = qzδyδzχ1 − qyδ
2
zχ1 − qyδ

2
xχ1 + qxδxδyχ1

(∇ ∧ H)z = qxδxδzχ1 − qzδ
2
xχ1 − qzδ

2
yχ1 + qyδyδzχ1.

(B.5)

Substituting (B.4b) and (B.5) into (1a) and taking into account (2a), (2b) gives

ax = ay = 1/iωε, az = 1/iωη (B.6)

and the three Helmhotz equations

(� + n2ω2)χ1qx = 0, (� + n2ω2)χ1qy = 0, (� + m2ω2)χ1qz = 0 (B.7)

having two sets of solutions

(� + n2ω2)χ1 = 0 with qz = 0 (B.8a)

(� + m2ω2)χ1 = 0 with qx = qy = 0 (B.8b)

A.1.1. First set of harmonic plane waves (qz = 0; |k| = nω). The harmonic plane wave
solutions of the Helmholtz equation (B.8a) are written as

χ1 = Aψn, ψn = exp[i(kxx + kyy + kzz)], k2
x + k2

yk
2
z = n2ω2 (B.9)

and we introduce the amplitudes

A1 = qxA, A2 = qyA, A3 = qzA. (B.10)

Then, substituting (B.9) into (B.4b) and taking into account (B.10) gives, since qz = 0,

Hx = −ikzA2ψn, Ex = i/ωε
(
k2
xA1 + kxkyA2

)
ψn − iωµA1ψn

Hy = ikzA1ψn, Ey = i/ωε
(
kxkyA1 + k2

yA2
)
ψn − iωµA2ψn

Hz = i(kxA2 − kyA1)ψn, Ez = i/ωηkz(kxA1 + kyA2)ψn.

(B.11)

But, the amplitudes A are arbitrary and the genuine ordinary plane waves (B.11) depend only
on one amplitude A : for A1 = kyA and A2 = −kxA we get the fields (21a), among other
possibilities are A1 = kxA with A2 = kyA,A1 = 0, A2 = 0, . . ..

11
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A.1.2. Second set of harmonic plane waves (qx = qy = 0; |k| = mω). The scalar field χ1 is
now a solution of the Helmholtz equation (B.8b)

χ1 = Aψm, ψm = exp[i(kxx + kyy + kzz)], k2
x + k2

y + k2
z = m2ω2. (B.12)

Substituting (B.12) into (B.4b) and still using (B.10) gives since qx = qy = 0

Hx = ikyAzψm, Ex = i/ωεkxkzAzψm,

Hy = −ikxAzψm, Ey = i/ωεkykzAzψm,

Hz = 0, Ez = i/ωεk2
zAzψm − iωµAzψm.

(B.13)

This ordinary wave with |k| = mω is a particular feature of the Hertz–Debye technique.

A.2. ‘Magnetic’ solutions (χ1 = 0)

We get from (B.1) and (B.3)

Hx = qy∂x∂yχ2 − qx∂
2
yχ2 − qx∂

2
z χ2 + qz∂x∂zχ2,

Hy = qz∂y∂zχ2 − qy∂
2
z χ2 − qy∂

2
xχ2 + qx∂x∂yχ2, (B.14a)

Hz = qx∂x∂zχ2 − qz∂
2
xχ2 − qx∂

2
yχ2 + qy∂y∂zχ2,

Ex = −iωµ(qz∂yχ2 − qy∂zχ2)

Ex = −iωµ(qx∂zχ2 − qz∂xχ2) (B.14b)

Ex = −iωµ(qy∂xχ2 − qx∂yχ2)

and according to (B.14a) the components of ∇ ∧ H are with the Laplacian operator �

(∇ ∧ H)x = −qz∂y�χ2 + qy∂z�χ2

(∇ ∧ H)y = −qx∂z�χ2 + qz∂x�χ2

(∇ ∧ H)z = −qy∂x�χ2 + qx∂y�χ2.

(B.15)

Substituting (B.14b) and (B.15) into (1.a) gives the equations

(� + n2ω2)[qx∂zχ2 − qz∂xχ2] = 0

(� + n2ω2)[qz∂yχ2 − qy∂zχ2] = 0

(� + m2ω2)[qy∂xχ2 − qx∂yχ2] = 0

(B.16)

with two sets of plane wave solutions

(� + n2ω2)χ2 = 0 with qy∂xχ2 − qx∂yχ2 = 0 (B.17a)

(� + m2ω2)χ2 = 0 with qz = 0 and ∂zχ2 = 0. (B.17b)

A.2.1. First set of harmonic plane waves (|k| = nω). The scalar field χ2 has the expression
(B.9) so that the condition qy∂xχ2 − qx∂yχ2 = 0 becomes

kxqy − kyqx = 0. (B.18)

Substituting (B.9) into (B.14b) and still using (B.11), we get

Hx = (
k2
zA1 − kxkzA3

)
ψn, Ex = ωµ(kyA3 − kzA2)ψn,

Hy = (
k2
zA2 − kykzA3

)
ψn, Ey = ωµ(kzA1 − kxA3)ψn,

Hx = [(
k2
x + k2

y

)
A3 − kz(kxA1 + kyA2)ψn, Ex = 0

(B.19)

12
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in which according to (B.18)

kxA2 − kyA1 = 0 (B.20)

a relation satisfied with A1 = A2 = 0. Then, the relations (B.19) become

Hx = −kxkzA3ψn, Ex = ωµkyA3ψn

Hy = −kykzA3ψn, Ey = −ωµkxA3ψn

Hx = (
k2
x + k2

y

)
A3ψn, Ez = 0

(B.21)

which is the field (21a). The alternative A1 = kxA,A2 = −kyA and A3 = 0 gives the same
expressions multiplied by −kz.

A.2.2. Second set of harmonic plane waves (|k| = mω). Since kz = 0 to satisfy the condition
∂zχ2 = 0, the scalar field χ2 becomes

χ2 = Aψ ′
m, ψ ′

m = exp[i(kxx + kyy)], k2
x + k2

y = m2ω2. (B.22)

Substituting (B.22) into (B.14b) gives, since qz = 0,

Hx = −ky(kxA2 − kyA1)ψ
′
m, Ex = 0

Hy = kx(kxA2 − kyA1)ψ
′
m, Ey = 0

Hz = 0, Ex = ωµ(kxA2 − kyA1)ψ
′
m

(B.23)

which becomes with kxA2 − kyA1 = A the simple TE mode with wave vector in the x-y plane

Ex = Ey = Hz = 0, Ez = ωµAψ ′
m, Hx = −kyAψ ′

m, Hy = kxAψ ′
m.

(B.24)

This field such as |k| = mω is also a particular feature of the Hertz–Debye technique.
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